Crystal Structures and Electronic Absorption Spectra of Two Modifications of Cr(SeO₂OH)(Se₂O₅)

M. Wildner*,1 and M. Andrut†

* Institut für Mineralogie und Kristallographie, Geozentrum, Universität Wien, Althanstraße 14, A-1090 Wien, Austria; and † GeoForschungsZentrum Potsdam, Telegrafenberg A3, D-14473 Potsdam, Germany

Received May 5, 1997; accepted August 18, 1997

INTRODUCTION

Single crystals of two modifications (I and II) of Cr(SeO₂OH) (Se₂O₅) have been synthesized under low-hydrothermal conditions. Their structures have been investigated using single-crystal X-ray diffraction data up to $\sin \theta / \lambda = 0.76 \text{ Å}^{-1}$ [I: monoclinic, space group $P2_1/n$, a = 7.517(2) Å, b = 12.516(3) Å, c =7.381(2) Å, $\beta = 91.46(1)^{\circ}$, Z = 4, R1 = 0.030 for 1562 $F_0 > 1000$ $4\sigma(F_0)$ and 114 variables; II: orthorhombic, space group *Pnma*, a = 8.782(2) Å, b = 11.172(3) Å, c = 7.545(2) Å, Z = 4, R1 =0.031 for 752 $F_0 > 4\sigma(F_0)$ and 65 variables]. In Cr(SeO₂OH) (Se₂O₅)-I, sheets—built up from isolated CrO₆ octahedra and Se₂O₅ groups—are linked via the SeO₂OH groups and rather strong hydrogen bonds. This structure is isotypic with the corresponding compounds of Mn(III) and Fe(III). Cr(SeO₂OH) (Se₂O₅)-II represents a new framework structure type, also composed of isolated CrO₆ octahedra and Se₂O₅ and SeO₂OH groups, but with very weak hydrogen bonds. The hydrogen-bonding schemes of both compounds were further investigated by FTIR microscope spectrometry in the range $7000-1000 \text{ cm}^{-1}$, vielding a typical AB-band spectrum for phase I. Furthermore, polarized electronic absorption spectra were measured in the range 33,000-12,500 cm⁻¹ using UV-VIS microscope spectrometric techniques. According to the weak distortions of the CrO_6 octahedra in both compounds, the observed band splittings and polarization effects are rather weak. Hence, crystal field calculations were performed assuming O_{h} symmetry, resulting in the following crystal field parameter sets; I, Dq = 1558, $B_{35} = 653$, $B_{55} = 760, C = 2920 \text{ cm}^{-1}$; II, $Dq = 1641, B_{35} = 647, B_{55} = 730$, C = 2815 cm⁻¹. These Dq values are slightly below average compared to octahedral Cr(III) in other oxygen-based structures, a tendency that was already observed for other 3dtransition elements in crystal fields of selenite compounds. This might indicate a rather low position of the $[SeO_3]^{2-}$ anion within the range of oxygen-based ligands in the spectrochemical series. © 1998 Academic Press

In the past few years, the crystal chemistry and hence the structural characterization of selenite compounds have gained increasing interest, especially due to the stereochemical consequences of the presence of the lone-pair electrons of the Se(IV) atoms; for a survey, cf. ref 1. The majority of these investigations deal with selenites of divalent transition metal ions. Among trivalent transition ions, particularly many Fe(III) selenites have been studied: a recent summary is given in ref 2. In spite of the fact that polyhedra of Fe(III) and Cr(III) exhibit similar average Me-O bond lengths (3), only two Cr(III) selenites have been structurally investigated up to now, namely, $Cr_2(SeO_3)_3 \cdot 3H_2O(4)$ and $Cr_2(Se_2O_5)_3$ (5), which both are isotypic with the respective iron selenites (5, 6). The present paper reports the structural and spectroscopic characterization of two polymorphs of the new compound $Cr(SeO_2OH)(Se_2O_5)$. Modification I is isotypic with the corresponding compounds of Fe(III) (7) and Mn(III) (8), while modification II represents a new structure type. In their paper on $Cr_2(Se_2O_5)_3$, Lafront et al. (5) pointed out that Bertaud (cf. ref 5), who reported different lattice constants for "Cr2(Se2O5)3," in fact studied the compound Cr(SeO₂OH)(Se₂O₅)-I. Transforming Bertaud's lattice constants to the $P2_1/n$ cell setting used here and in ref 8 and comparing them with the values listed in Table 1, this might indeed be the case (Bertaud's transformed cell: a =7.594 Å, b = 12.553 Å, c = 7.356 Å, $\beta = 90.95^{\circ}$).

In addition, it seemed worthwhile to investigate the spectroscopic properties of the title compounds for several reasons. For instance, the electronic absorption spectra of transition metal selenites measured so far (9-12) indicate a rather low position of the $[SeO_3]^{2-}$ anion within the range of oxygen-based ligands in the spectrochemical series. This tendency is substantiated by the present UV–VIS absorption measurements. As a further aspect, hydroxyl groups of acid selenites usually form strong or very strong hydrogen bonds, leading to so-called AB or ABC bands in infrared spectra (13, 14). While a typical AB-band IR

¹To whom correspondence should be addressed. E-mail: manfred. wildner@univie.ac.at.

TABLE 1Crystal Data and Details of the X-Ray Data Collections andStructure Refinements of Two Modifications of Cr(SeO2OH)(Se₂O₅)

	Cr(SeO ₂ OH)(Se ₂ O ₅)-I	Cr(SeO ₂ OH)(Se ₂ O ₅)-II
M _r	417.88	417.88
Space group	$P2_1/n$ (No. 14, cell choice 2)	Pnma (No. 62)
a (Å)	7.517(2)	8.782(2)
b (Å)	12.516(3)	11.172(3)
<i>c</i> (Å)	7.381(2)	7.545(2)
β (°)	91.46(1)	
V (Å ³)	694.2	740.3
Ζ	4	4
$\rho_{\text{calc}} (\text{g cm}^{-3})$	3.998	3.750
$\mu(MoK\alpha)$ (cm ⁻¹)	173.8	163.0
Crystal size (mm)	$0.15 \times 0.08 \times 0.05$	$0.10\times 0.07\times 0.06$
Crystal shape	(010) plate, elongated//a	forms {010}, {101}
Measured reflections	5375	3025
Unique data set	2519	1407
Variables	114	65
Transmission factors (ψ scans)	0.21-0.33	0.35-0.43
Extinction coefficient	0.00155	0.00112
R _{int}	0.059	0.065
wR2 (for all F_0^2)	0.065	0.056
R1 [for 1562, 752 $F_0 > 4\sigma(F_0)$]	0.030	0.031
Goodness of fit	0.88	0.84
$(\Delta/\sigma)_{\rm max}$	< 10 ⁻³	$< 10^{-3}$
$\Delta \rho_{\min/\max}$ (e Å ⁻³)	-1.27/0.82	-1.21/1.05

Note: $R1 = \sum ||F_o| - |F_c|| / \sum |F_o|;$

 $wR2 = \left[\sum w(F_o^2 - F_c^2)^2 / \sum wF_o^4\right]^{1/2};$

 $w_{\text{phase I}} = 1 / [\sigma^2 (F_o^2) + (0.0255P)^2], P = \{ [\max(0 \text{ or } F_o^2)] + 2F_o^2 \} / 3;$

 $w_{\text{phase II}} = 1/\sigma^2 (F_o^2).$

spectrum is observed for $Cr(SeO_2OH)(Se_2O_5)$ -I, modification II exhibits uncommonly weak hydrogen bonding and thus provides new data for a correlation of IR spectroscopic data with structural data in acid selenites. For a short preliminary note on $Cr(SeO_2OH)(Se_2O_5)$ -I, cf. ref 15.

EXPERIMENTAL

Emerald green single crystals of two modifications of $Cr(SeO_2OH)(Se_2O_5)$ in sizes up to 0.2 mm were synthesized in a Teflon-lined steel vessel, starting with an appropriate mixture of Cr(OH)₃ and SeO₂ in H₂O. The closed vessel was kept at 220°C for 5 days and then cooled to room temperature within 12 h. In addition to crystals of the monoclinic phase I, only a few single crystals of the orthorhombic phase II ($\ll 1 \text{ vol}\%$) were obtained. Single-crystal X-ray diffraction intensities up to $2\theta = 65^{\circ}$ and 35 accurate 2θ values in the range 28° - 34° for the least-squares refinement of lattice parameters were measured on a Stoe AED2 four-circle diffractometer using graphite-monochromatized MoK α radiation (293 K; 2 θ - ω scans, 36 steps per reflection, increased for $\alpha_1 - \alpha_2$ splitting, 2 × 5 steps for background correction; 0.03° and 0.5-2.0 s per step; three standard reflections every 60 min). The intensity data were corrected for Lorentz, polarization, and absorption effects (by ψ scans).

 TABLE 2

 Atomic Coordinates and Equivalent Displacement

 Parameters (Å²) of Cr(SeO₂OH)(Se₂O₅)-I

	x	У	Ζ	$U_{\rm eq}$
Cr	0.44446(9)	0.67788(6)	0.31590(8)	0.0130(2)
Se1	0.05649(5)	0.80235(4)	0.39961(5)	0.0126(1)
Se2	0.07525(6)	0.63221(4)	0.08031(5)	0.0124(1)
Se3	0.73141(5)	0.51015(4)	0.43266(5)	0.0125(1)
O1	0.5309(4)	0.7563(3)	0.1020(4)	0.0154(6)
O2	0.2742(4)	0.7950(3)	0.3608(4)	0.0186(6)
O3	0.2739(4)	0.5933(3)	0.1669(4)	0.0176(7)
O4	0.6270(4)	0.7589(3)	0.4632(4)	0.0158(6)
O5	0.8792(4)	0.0668(3)	0.2420(4)	0.0156(6)
O6	0.6117(4)	0.3970(3)	0.4587(4)	0.0167(6)
O 7	0.5959(5)	0.9565(3)	0.1951(5)	0.0240(8)
O8	0.5247(4)	0.1875(3)	0.2231(4)	0.0200(7)
Н	0.579(10)	0.909(6)	0.145(10)	0.057(26)

The structure of phase I was refined on F^2 with the program SHELXL-93 (16), starting with the positional parameters given by Koskenlinna and Valkonen (8) for the non-hydrogen atoms in the isotypic compound $Mn(SeO_2OH)$ (Se₂O₅). The position of the hydrogen atom was extracted from a difference Fourier map and refined isotropically. The structure of phase II was solved using direct methods (17) and subsequent Fourier and difference Fourier syntheses. In the refinement on F^2 (16), the O5–H distance was softrestrained to 0.90(5) Å using SHELXL's DFIX instruction. Crystal data and details of the structure refinements for both modifications of Cr(SeO₂OH)(Se₂O₅) are summarized in Table 1; Tables 2 and 3 list final positional and equivalent displacement parameters. $F_{o}-F_{c}$ tables and a table of anisotropic displacement parameters can be obtained from the corresponding author (M.W.) upon request.

Polarized electronic absorption spectra of $Cr(SeO_2OH)$ (Se₂O₅)-I and -II in the range 33,000–12,500 cm⁻¹ were measured at room temperature on a Zeiss UMSP-80

 TABLE 3

 Atomic Coordinates and Equivalent Displacement Parameters

 (Ų) of Cr(SeO₂OH)(Se₂O₅)-II

	x	У	Ζ	$U_{ m eq}$
Cr	0	1/2	0	0.0102(2)
Se1	0.28153(4)	0.39256(3)	0.20568(5)	0.0126(1)
Se2	0.98936(7)	1/4	0.79941(9)	0.0138(1)
O1	0.1202(3)	0.4696(2)	0.2151(4)	0.0170(6)
O2	0.3361(3)	0.3945(3)	0.4183(4)	0.0166(6)
O3	0.1878(5)	1/4	0.2133(7)	0.0180(9)
O4	0.0959(3)	0.3664(2)	0.8682(4)	0.0147(6)
O5	0.5323(7)	1/4	0.9279(7)	0.0324(14)
Н	0.624(5)	1/4	0.934(9)	0.013(19)

microscope spectrometer. Spectral bandwidths and steps widths were both 1 nm, and the measuring spot was 40 μ m in diameter. Details of the microscope spectrometric techniques are described in ref 18.

For monoclinic Cr(SeO₂OH)(Se₂O₅)-I, the following orientation of the axes of the optical indicatrix (arbitrarily labeled X, Y, Z) to the positive crystallographic axes is observed (with white light): $\measuredangle X, a = 22.5(5)^\circ, \ \measuredangle X, c =$ $(69.0(5)^{\circ}, Y = b, Z \perp X, Y)$. Spectra with the electric light vector parallel to X and Z were measured on the (010) face of a well-developed single crystal. Furthermore, a crystal slab polished parallel to (001) was prepared in analogy to previous papers (e.g. ref 9), enabling the measurement of the Y spectrum and of a spectrum parallel to the crystallographic *a* axis. As expected, the latter spectrum resembles the X spectrum and is ignored in this paper. The sample thicknesses were measured with a micrometer screw (polished sample: $20 \pm 1 \,\mu\text{m}$) or estimated by comparison with a micrometer scale (single crystal: $55 + 5 \mu m$). For orthorhombic Cr(SeO₂OH)(Se₂O₅)-II, optical indicatrix and crystallographic axes are arbitrarily correlated as follows: $X \parallel a, Y \parallel b, Z \parallel c$. X- and Z-polarized spectra were measured on the (010) face (estimated thickness: $55 + 5 \mu m$), the Y spectrum and a spectrum parallel to [101] were measured on the (101) face (estimated thickness: $70 \pm 5 \mu m$) of the same single crystal that was already used for the X-ray investigations.

Crystal field calculations were done using the Crystal Field Computer Package of Yeung and Rudowicz (19).

Single-crystal FTIR spectra were recorded in the region 7000–1000 cm⁻¹ with Perkin-Elmer 1760X (phases I and II) and Bruker IFS66 spectrometers (phase II), both equipped with a FTIR microscope with a liquid N₂ cooled MCT detector. In the same spectral region, spectra of powdered samples of phase I diluted in KBr pellets were obtained with the 1760X spectrometer using a beam condensor with CsI lenses and a TGS detector.

RESULTS AND DISCUSSION

Crystal Structures

The crystal structures of the two modifications of $Cr(SeO_2OH)(Se_2O_5)$ are shown in Figs. 1 (phase I, projection along *a*) and 2 (phase II, projection along *c*); selected interatomic distances and bond angles are listed in Tables 4 and 5, respectively.

The structure of monoclinic $Cr(SeO_2OH)(Se_2O_5)$ -I is isotypic with the corresponding compounds of Mn(III) (8) and Fe(III) (7). In this structure type isolated CrO_6 octahedra are connected by Se_2O_5 groups to corrugated sheets parallel to (010); each Se_2O_5 group (built up from Se1 and Se2) shares its four terminal oxygen corners with three CrO_6 octahedra. These sheets are interconnected by SeO_2OH groups (Se3)—linking two octahedra each—and their rather strong hydrogen bonds. The orthorhombic modification $Cr(SeO_2OH)(Se_2O_5)$ -II represents a new structure type where isolated CrO_6 octahedra are linked via Se_2O_5 and SeO_2OH groups to a three-dimensional framework

FIG. 1. Crystal structure of Cr(SeO₂OH)(Se₂O₅)-I in a projection along [100].

FIG. 2. Crystal structure of $Cr(SeO_2OH)(Se_2O_5)$ -II in a projection along [001]. For one hydrogen atom, a possible bifurcation of the hydrogen bridge is indicated.

structure; here, the diselenite groups (built up from two Se1) each connect four CrO_6 octahedra by common corners, while each SeO₂OH group (Se2) again links two octahedra. The hydrogen bonds donated by the SeO₂OH groups are very weak and therefore play a minor role in the structure of phase II.

In both compounds, the CrO₆ polyhedra exhibit nearly regular octahedral shapes and mean Cr(III)–O bond lengths in agreement with crystal chemical expectations. For example, in two further Cr(III) selenites that have been structurally characterized so far, Cr₂(SeO₃)₃ · 3H₂O (4) and Cr₂(Se₂O₅)₃ (5), \langle Cr(III)–O \rangle distances range from 1.965 to 1.990 Å. In Cr(SeO₂OH)(Se₂O₅)-I the mean bond length and the bond length distortion are slightly higher compared to II. Nevertheless, the type of this distortion cannot be correlated with the strong [4+2] Jahn–Teller elongation of the Mn(III) O₆ polyhedron in the isotypic manganese compound (8); actually, the axis of elongation in the MnO₆ polyhedron, O1–O6, represents the shortest axis of the CrO₆ octahedron in phase I.

The Se(IV) atoms are characteristically one-sided pyramidally coordinated to three oxygen atoms, a consequence of the activity of the lone-pair electrons of tetravelent selenium atoms. The SeO₂OH as well as the Se₂O₅ groups have usual mean Se–O distances and exhibit typical bond length distortions with Se–OH and bridging Se–O bond lengths close to corresponding average values given in the literature, i.e., 1.761 Å for Se–OH bonds of SeO₂OH groups (average mean Se–O = 1.702 Å) and 1.818 Å for Se–O bridges of Se₂O₅ groups (average mean Se–O = 1.717 Å) (1). The Se–O–Se angles of the diselenite groups, $\sim 125^{\circ}$ in both compounds, are comparatively large: Se-O-Se angles of 29 Se_2O_5 groups found in 21 diselenite compounds (out of 24 diselenites described so far in the literature) range from 115.3° in Au₂(SeO₃)₂(Se₂O₅) (20) to 126.4° in the Mn analog of phase I, $Mn(SeO_2OH)(Se_2O_5)$ (8). The only exceptions are the isotypic compounds $MnSe_2O_5$ (21) and $CdSe_2O_5$ (22), with Se–O–Se angles of 136.9° and 140.3° , respectively. These values are classified by the respective authors as "inexplicable" (21) and "typical of diselenites" (22) (the latter is obviously not the case). For $Ca_2(SeO_2OH)_2(Se_2O_5)$ (23) a Se-O-Se angle of 131.3° is given assuming a special, twofold position for the bridging oxygen. However, according to the structure refinement, the position of this oxygen atom is split around the twofold axis, resulting in a 'normal' Se–O–Se angle of 122.3°. Evidently, a lot more structural data on new diselenite compounds are required for a thorough stereochemical discussion on Se-O-Se angles of Se₂O₅ groups.

Hydrogen Bonding and Related IR Spectroscopic Data

The hydrogen-bonding system in $Cr(SeO_2OH)(Se_2O_5)$ -I is clear-cut (Table 4 and Fig. 1) and corresponds to the

$\ln \operatorname{Cr}(\operatorname{SeO}_2\operatorname{OH})(\operatorname{Se}_2\operatorname{O}_5)-1$					
Cr octahedron					
Cr-O1	1.983(3)	O1–Cr–O2	89.6(1)		
-O2	1.980(3)	-O3	92.5(1)		
-O3	1.975(3)	-O4	87.0(1)		
-O4	2.004(3)	-O5	86.6(1)		
-O5	1.975(3)	-O6	172.9(1)		
-O6	1.964(3)	O2–Cr–O3	94.4(1)		
$\langle Cr-O \rangle$	1.980	-O4	88.3(1)		
		-O5	176.2(1)		
		-O6	93.3(1)		
Hydrogen bond		O3–Cr–O4	177.2(1)		
07-Н	0.71(7)	-O5	86.1(1)		
$H \cdots O1$	1.97(7)	-O6	93.8(1)		
O7–O1	2.640(5)	O4–Cr–O5	91.1(1)		
O7–H · · · O1	158(8)	-O6	86.6(1)		
		O5–Cr–O6	90.4(1)		
	Se enviror	nments			
Sel-O1	1.680(3)	O1–Sel–O2	105.3(2)		
-O2	1.671(3)	-O8	93.1(1)		
-O8	1.797(3)	O2–Sel–O8	101.0(1)		
$\langle Sel-O \rangle$	1.716	$\langle O-Sel-O \rangle$	99.8		
Se2–O3	1.682(3)	O3-Se2-O4	102.6(1)		
-O4	1.665(3)	-O8	101.0(1)		
-O8	1.790(3)	O4-Se2-O8	102.3(1)		
$\langle Se2-O \rangle$	1.712	$\langle O-Se2-O \rangle$	101.9		
	Sel-O8-Se2	125.0(2)			
Se3–O5	1.674(3)	O5–Se3–O6	100.8(1)		
-O6	1.692(3)	-07	96.2(2)		
-O7	1.757(4)	O6-Se3-O7	98.2(2)		
⟨Se3–O⟩	1.708	$\langle O - Se3 - O \rangle$	98.4		

TABLE 4 Selected Interatomic Distances (Å) and Bond Angles (Deg) in Cr(SeO₂OH)(Se₂O₅)-I

model proposed for the isotypic iron compound (7), where
the hydrogen atom could not be located [for the isotypic
Mn compound (8) neither a H position nor a hydrogen-
bonding scheme was proposed]. The SeO ₂ OH group do-
nates a rather strong hydrogen bond with an O7-HO1
distance of 2.640 Å. The infrared spectrum exhibits an
AB-band system due to Fermi resonance of the v _{OH} stretch-
ing mode with the $2\delta_{OH}$ in-plane bending overtone, as typi-
cally observed also for acid selenites of divalent metals (13,
14). IR absorption bands related to hydrogen bonding are
observed at 1248 (δ_{OH} in-plane bending mode), 2425 ($2\delta_{OH}$
overtone, B band), 2890 (von stretching mode, A band), and
~4200 cm ⁻¹ [$v_{OH}(A) + \delta_{OH}$ combination mode]. In the
isotypic Fe(III) compound (7), where O–H \cdots O is 2.670 Å
the AB bands and $\delta_{\rm OH}$ are reported at 2853, 2395, and
1233 cm ⁻¹ , respectively. Both data sets agree reasonably
well with those observed for various acid M(II) selenites
containing comparable O-H···O distances (13, 14) as well
as with general correlations found for v_{OH} stretching fre-
quencies versus $O-H\cdots O$ bond lengths (e.g., refs 24 and 25).

 TABLE 5

 Selected Interatomic Distances (Å) and Bond Angles (Deg)

 in Cr(SeO₂OH)(Se₂O₅)-II

		Cr octa	hedron		
Cr–O1	$2 \times$	1.965(3)	O1CrO2	$2 \times$	88.2(1)
-O2	$2 \times$	1.960(3)	-O2	$2 \times$	91.8(1)
-O4	$2 \times$	1.981(3)	-O4	$2 \times$	86.8(1)
⟨Cr−O⟩		1.969	-O4	$2 \times$	93.2(1)
· /			O2CrO4	$2 \times$	89.0(1)
			-O4	$2 \times$	91.0(1)
		Possible hyd	rogen bonds		
О5–Н		0.81(4)	-		
$H \cdots O3$		2.72(7)	$H \cdots O2$	$2 \times$	2.70(4)
O5–O3		3.032(7)	O5–O2	$2 \times$	3.327(6)
$O5-H \cdots O3$		105(5)	$O5-H \cdots O2$	$2 \times$	135(3)
		Se envir	onments		
Sel-O1		1.660(3)	O1-Sel-O2		101.4(2)
-O2		1.674(3)	-O3		93.9(2)
-O3		1.794(3)	O2-Sel-O3		96.4(2)
$\langle Sel-O \rangle$		1.709	$\langle \text{O-Sel-O} \rangle$		97.2
		Sel-O3-Se1	125.2(2)		
Se2–O4	$2 \times$	1.684(3)	O4–Se2–O4		101.1(1)
-O5		1.756(5)	-O5	$2 \times$	100.5(2)
$\langle \text{Se2-O} \rangle$		1.708	$\langle 0$ –Se2–O \rangle		100.7

It is worth mentioning that in $Cr(SeO_2OH)(Se_2O_5)$ -I a further interpolyhderal O···O contact (cf. 26) shorter than 3.0 Å occurs, O7···O8 = 2.949 Å, which is obviously not involved in the hydrogen-bonding system of this compound.

Contrary to the strong hydrogen bonds most commonly found in acid selenites (13, 14), possible hydrogen bonds in $Cr(SeO_2OH)(Se_2O_5)$ -II, donated by oxygen O5, are very weak. A single bridge, O5-H···O3, located in the mirror plane, has $O \cdots O = 3.032$ Å, while the position of the H atom (which is, of course, not very reliable when determined by X-ray diffraction) favors a bifurcation to O2 with $O5-H\cdots O2 = 3.327$ Å. The assignment of the IR spectrum is not as straightforward as for phase I, and unfortunately, there are hardly any correlation data for very weak or bifurcated bonds in the literature. In any case, a discussion in terms of an AB-band system seems not appropriate, since Fermi resonances are expected to be negligible. Bands at 1050 or 1315 cm⁻¹ might represent the δ_{OH} bending mode. The v_{OH} stretching band is split up with maxima at 3385 and 3435 cm^{-1} , and a much weaker component occurs at 3655cm⁻¹; the $2v_{OH}$ overtone at 6690 cm⁻¹ is not split up. A very sharp band at 4461 cm⁻¹ can be assigned to the $v_{OH} + \delta_{OH}$ combination mode; this indicates that the band at 1050 $\rm cm^{-1}$ is $\delta_{\rm OH}$, and a further sharp band at 2083 cm⁻¹ represents its practically unperturbed overtone $2\delta_{OH}$. However, the rather strong intensity of the latter band in single-crystal spectra is in contradiction to its large frequency separation from the stretching mode v_{OH} .

FIG. 3. Polarized absorption spectra of Cr(SeO₂OH)(Se₂O₅)-I in the region 12,500–32,000 cm⁻¹.

Electronic Absorption Spectra

Polarized electronic absorption spectra of Cr(SeO₂OH) (Se₂O₅)-I and -II are presented in Figs. 3 and 4, respectively. Observed band positions, assignments, and results of crystal field calculations (assuming O_h symmetry) are summarized

in Table 6. The spectra are characterized by two intense absorption bands in the visible region, which are typical of Cr(III) ions in octahedral coordination by oxygen atoms. These bands, in the title compounds located around 16,000 and 22,500 cm⁻¹ with typical bandwidths at half-height of ~2500 and ~3200 cm⁻¹, can be assigned to the

FIG. 4. Polarized absorption spectra of Cr(SeO₂OH)(Se₂O₅)-II in the region 12,500–32,000 cm⁻¹.

Cr(SeO ₂ OH)(Se ₂ O ₅)-I ($Dq = 1558, B_{35} = 653, B_{55} = 760, C = 2920$)		$Cr(SeO_2OH) (Se_2O_5)$ -II ($Dq = 1641, B_{35} = 647, B_{55} = 730, C = 2815$)		
Observed	Calculated	Observed	Calculated	Assignment
	0		0	${}^{4}A_{2a}({}^{4}F)$
14,225	14,228	13,750	13,750	${}^{2}E_{o}^{2}G$
14,948	14,951		14,434	${}^{2}T_{1g}^{\circ}({}^{2}G)$
\sim 15,490 (Z), \sim 15,670 (XY)	15,580	\sim 16,370 (<i>XZ</i>), \sim 16,450 (<i>Y</i>)	16,410	${}^{4}T_{2g}^{-3}({}^{4}F)$
$\sim 20,280 (XY), \sim 20,400 (Z)$	21,213	—	20,692	${}^{2}T_{2g}^{\circ}({}^{2}G)$
$\sim 21,840 (YZ), \sim 22,220 (X)$	22,030	\sim 22,700 (<i>XZ</i>), \sim 23,100 (<i>Y</i>)	22,900	${}^{4}T_{1g}^{-3}({}^{4}F)$
	~27,000-34,000		~27,500-34,500	$({}^{2}G, {}^{2}H, {}^{2}P)$
—	34,502	—	36,029	${}^{4}T_{1g}({}^{4}P)$

 TABLE 6

 Crystal Field Parameters (cm⁻¹), Observed and Calculated Energy Levels (cm⁻¹), and Corresponding O_h Assignments (with Parental Free-Ion Terms in Parentheses) for Two Modifications of Cr(SeO₂OH)(Se₂O₅)

spin-allowed ${}^{4}A_{2g}(F) \rightarrow {}^{4}T_{2g}(F)$ and ${}^{4}A_{2g}(F) \rightarrow {}^{4}T_{1g}(F)$ transitions. The third spin-allowed transition to the ${}^{4}T_{1g}(P)$ level, expected above $34,000 \text{ cm}^{-1}$, is obscured by the charge transfer absorption edges at $\sim 32,000$ cm⁻¹. In the spectra of phase I, a few spin-forbidden quartet \rightarrow doublet transitions are clearly observed: sharp peaks at 14,225 and 14,948 cm^{-1} are attributed to the nearly field-independent ${}^{2}E_{g}(G)$ and ${}^{2}T_{1g}(G)$ levels, both derived from the t_{2g}^{3} electron configuration. A weak shoulder (~20,340 cm⁻¹) at the lowenergy wing of the intense ${}^{4}T_{1g}(F)$ band might be correlated with the transition to ${}^{2}T_{2g}(G)$; this level also belongs to the t_{2g}^3 configuration but has a somewhat stronger dependence from the crystal field strength Dq compared to ${}^{2}E_{a}(G)$ and $^{2}T_{1\sigma}(G)$. This may explain the bandwidth of ~700 cm⁻¹ (FWHH, derived from Gaussian peak fitting analysis) in room temperature spectra. In phase II, only one weak band, at $13,750 \text{ cm}^{-1}$, can be ascribed to a spin-forbidden transition, i.e., to the ${}^{2}E_{\sigma}(G)$ level. Spectral features at lower wavenumbers are obviously caused by background noise.

The different magnitude of the absorption intensity in the d-d spectra of the title compounds is correlated to the extent of violation of the Laporte selection rule within the CrO₆ octahedra, in phase I (Cr site symmetry 1) realized by the static absence of a center of symmetry, and in phase II (Cr site symmetry $\overline{1}$) only by dynamic removal due to uneven octahedral vibrations. As a consequence of the comparatively weak octahedral distortions—leading to rather small band splittings and polarization effects (especially in phase II)—no obvious higher polyhedral pseudosymmetry can be proposed for a detailed analysis of level splittings and symmetry selection rules. Thus, crystal field calculations were performed assuming O_h symmetry for the Cr(III)O₆ octahedra in both compounds.

For a d^3 electron configuration in octahedral fields, the first spin-allowed transition ${}^{4}A_{2g}(F) \rightarrow {}^{4}T_{2g}(F)$ equals 10Dq; i.e., Dq is 1558 cm⁻¹ in phase I and 1641 cm⁻¹ in phase II.

On the one hand, this difference in the crystal field strength correlates with the sequence of the mean Cr-O bond lengths: on the other hand, it is surprisingly large considering that the $\langle Cr-O \rangle$ distances differ by only 0.011 Å. Generally, the observed Dq values are slightly below average compared with data for Cr(III) in other oxygen-based structures, e.g., in minerals, where Dq mostly ranges between ~1550 and ~1850 cm⁻¹ (27), or with Dq = 1740 cm⁻¹ for Cr(III) in aqueous solution (28). A similar tendency was also found for other 3d transition elements in crystal fields of selenite compounds investigated so far, i.e., Mn(IV) (10) and Co(II) (9, 11, 12), thus indicating a rather low position of the $[SeO_3]^{2-}$ anion within the range of oxygen-based ligands in the spectrochemical series. The Racah parameters B_{35} -evaluated from Dq and the second spin-allowed transition, ${}^{4}A_{2g}(F) \rightarrow {}^{4}T_{1g}(F)$ —and the resulting nephelauxetic ratios β_{35} (relative to the free-ion value $B_0 =$ 918 cm⁻¹) are practically equal in both compounds (I: $B_{35} =$ 653 cm⁻¹, $\beta_{35} = 0.71$; II: $B_{35} = 647$ cm⁻¹, $\beta_{35} = -0.70$). These values are intermediate within the wide range of B_{35} values given in the literature for Cr(III) in fields of oxygen ligands. As expected, Racah B_{55} , relevant for forbidden spin-flip transitions within the t_{2g} orbitals, is significantly higher than B_{35} . In phase I, B_{55} and Racah C were fitted to the ${}^{2}E_{g}(G)$ and ${}^{2}T_{1g}(G)$ levels $(B_{55} = 760 \text{ cm}^{-1})$, $\beta_{55} = 0.83$, C = 2920 cm⁻¹); in phase II, where only ${}^{2}E_{g}(G)$ is observed, the same C/B ratio as in phase I was assumed, leading to $B_{55} = 730 \text{ cm}^{-1}$ ($\beta_{55} = 0.80$) and C = 2815 cm^{-1} .

Additional crystal field calculations including spin–orbit coupling were performed to estimate the influence of "intensity stealing," i.e., the extent of admixture of quartet character to the spin-forbidden doublet states. The spin–orbit coupling constant ζ was set to 200 cm⁻¹. The results correspond very well with the observed intensities of the spin-forbidden transitions: In Cr(SeO₂OH)(Se₂O₅)-I, ²E_g(G) and

 ${}^{2}T_{1g}(G)$ both gain up to more than 2% quartet character, while ${}^{2}T_{2g}(G)$ gains about 1.2%. In contrast, in Cr(SeO₂OH) (Se₂O₅)-II, where ${}^{2}E_{g}(G)$ represents the only (weakly) observed spin-forbidden band, this level has ~0.6% quartet admixture, while for ${}^{2}T_{1g}(G)$ and ${}^{2}T_{2g}(G)$ it is less than 0.3%.

ACKNOWLEDGMENTS

The authors thank K. Langer for allowing them to measure the electronic absorption spectra at the Institut für Mineralogie und Kristallographie, Technische Universität Berlin, Germany. The polished sample was carefully prepared by A. Wagner, Vienna. Thanks are also due to E. Libowitzky and A. Beran, Vienna, for discussions concerning the IR spectroscopic results.

REFERENCES

- 1. M. Koskenlinna, An. Acad. Sci. Fenn.-Chem. 262, 1 (1996). [Thesis, Helsinki University of Technology]
- 2. G. Giester, Z. Anorg. Allg. Chem. 622, 1788 (1996).
- 3. W. H. Baur, *in* "Structure and Bonding in Crystals" (M. O'Keeffe and A. Navrotsky, Eds.), Vol. II. p. 31. Academic Press, New York, 1981.
- 4. W. T. A. Harrison, G. D. Stucky and A. K. Cheetham, *Eur. J. Solid* State Inorg. Chem. **30**, 347 (1993).
- A. M. Lafront, J. Bonvoisin and J. C. Trombe, J. Solid State Chem. 122, 130 (1996).
- 6. G. Giester and F. Pertlik, J. Alloys Compd. 210, 125 (1994).

- 7. H. Muilu and J. Valkonen, Acta Chem. Scand., Ser. A 41, 183 (1987).
- M. Koskenlinna and J. Valkonen, Acta Chem. Scand., Ser. A 31, 638 (1977).
- 9. M. Wildner and K. Langer, Phys. Chem. Miner. 20, 460 (1994).
- 10. M. Wildner and K. Langer, Phys. Chem. Miner. 21, 294 (1994).
- 11. M. Wildner, J. Solid State Chem. 115, 360 (1995).
- 12. M. Wildner, J. Solid State Chem. 124, 143 (1996).
- 13. K. Unterderweide, B. Engelen, and K. Boldt, J. Mol. Struct. 322, 233 (1994).
- 14. K. Unterderweide, Thesis, University of Siegen, Germany, 1995.
- 15. M. Wildner and M. Andrut, Z. Kristallogr. 11, 95 (1996). [Suppl. Issue]
- G. M. Sheldrick, "SHELXL-93: A Program for Crystal Structure Refinement," University of Göttingen, Germany, 1993.
- G. M. Sheldrick, "SHELXS-86: A Program for the Solution of Crystal Structures," University of Göttingen, Germany, 1986.
- 18. K. Langer and K. R. Fentrup, J. Microsc. 116, 311 (1979).
- 19. Y. Y. Yeung and C. Rudowicz, Comput. Chem. 16, 207 (1992).
- P. G. Jones, E. Schwarzmann, G. M. Sheldrick, and H. Timpe, Z. Naturforsch. B: Chem. Sci. 36, 1050 (1981).
- J. Bonvoisin, J. Galy, and J. C. Trombe, J. Solid State Chem. 107, 171 (1993).
- J. Valkonen, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 50, 1381 (1994).
- 23. J. Valkonen, J. Solid State Chem. 65, 363 (1986).
- 24. A. Novak, Struct. Bonding 18, 177 (1974).
- 25. W. Mikenda, J. Mol. Struct. 147, 1 (1986).
- 26. J. Zemann, Z. Kristallogr. 175, 299 (1986).
- R. G. Burns, "Mineralogical Applications of Crystal Field Theory," 2nd ed. Cambridge University Press, Cambridge, 1993.
- 28. C. K. Jørgensen, Adv. Chem. Phys. 5, 33 (1963).